
This report is based on studies performed at Lincoln Laboratory, a center for research
operated by Massachusetts Institute of Technology. The work was sponsored by the
Strategic Defense Initiative Organization under Air Force Contract F19628-90-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The ESD Public Affairs Office has reviewed this report, and it
is releasable to the National Technical Information Service,
where it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Hugh L. Southall, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

A MODIFIED FAST FOURIER TRANSFORM

A.L. STEINBACH
C.H. WANNER

Group 35

TECHNICAL REPORT 867

24 JANUARY 1990

Approved for public release; distribution is unlimited.

LEXINGTON MASSACHUSETTS

ABSTRACT

This report presents a derivation of the modified discrete Fourier transform, which has the
property that the origin in frequency space appears in the center of the plot rather than at the edges
(one dimension) or at the four corners (two dimensions), as in conventional treatments. Also
included is a listing of an unusual fast Fourier transform (FFT) program for calculating the two-
dimensional, modified discrete Fourier transform. The program makes use of the Eklundh fast
matrix transposition algorithm and can transform arrays that are much too large to fit within the
internal memory of the computer. By way of example, a complex array of size 2048 X 2048 can
easily be transformed on a microcomputer with a 40-MB hard disk.

in

ACKNOWLEDGMENTS

We thank Kent Edwards and Charles Meins for their helpful suggestions and comments and
especially for their unfailing support during the course of this work. We also thank Marion Becker
for her precise and careful preparation of this manuscript.

TABLE OF CONTENTS

Abstract iii
Acknowledgments v
List of Illustrations ix

1. INTRODUCTION AND SUMMARY 1

2. ONE-DIMENSIONAL FOURIER TRANSFORMS 3

3. TWO-DIMENSIONAL FOURIER TRANSFORMS 13

4. PROGRAM DESCRIPTIONS AND SAMPLE CALCULATIONS 19
4.1 FFT2D 19
4.2 TTRANSP 21
4.3 TFFT2D 21
4.4 CONVOLVE 27

5. CONCLUSION 31

References 33

APPENDIX A-l

vn

LIST OF ILLUSTRATIONS

Figure
No. Page

1 Calculation of the forward and inverse Fourier transforms in one
dimension. 4

2 Relationship of the width of the convolution to that of its con-
stituent functions. 10

3 Calculation of the forward and inverse Fourier transforms in two
dimensions. IS

4 Calculation of the two-dimensional MDFT. 16

5 A function and its Fourier transform. 25

6 A function and its autoconvolution. 29

IX

1. INTRODUCTION AND SUMMARY

In radar theory, one frequently needs to compute Fourier transforms or quantities, such as
convolutions and cross-correlations, which are most easily calculated in terms of such transforms.
The required quantity is usually either a one- or two-dimensional continuous Fourier transform,
which is subsequently reduced to a discrete form suitable for numerical calculation. In standard
treatments1'2-3 of the one-dimensional case, computation of the forward and inverse continuous
Fourier transforms,

F(u) = FT{f(x)} = f °° f(x)e-i2•*dx (la)
•'.oc

f(x) = FT"1 (F(u)} = f °° F(u)ei2'nuidu , (lb)
•'.00

is reduced to computation of the corresponding forward and inverse discrete Fourier transforms
(DFT and IDFT, respectively):

, N-l
F(um) = DFT{f(x)} = - X f(xk)e-i(2-/N)mk (2a)

W k = 0

N- 1
f(xk) = IDFT{F(u)} = X F(un,)ei<2"-/N)kin , (2b)

m = 0

where

xk = kAX = k — ; k = 0, 1, . . . , N- 1
N

m
um = mAu= — ; m = 0, 1, . . . , N - 1

(3)

and

X = length of basic integration interval
N = number of sampling points
Ax and Au are the sampling distances in direct and inverse (i.e., frequency) space,
respectively.

In deriving Eq. (2a) from Eq. (la), one in effect converts an integral over the symmetric interval
[-X/2, X/2] into one over the asymmetric interval [0, X]. By choosing the sampling points in direct
space and frequency space (xk and um, respectively) to be those in Eq. (3) above, one obtains an
especially simple expression for the DFT. An equally simple expression is likewise found for the
IDFT. The above formulation has, however, one very significant disadvantage. Although one appar-
ently calculates the Fourier spectrum, F(um), within the frequency interval [0, U], one obtains, in

fact, the spectrum over the interval [-U/2, U/2] with the negative frequencies displaced so as to
occupy the interval [U/2, U].3-4 Thus, when one calculates the DFT of a one-dimensional array, one
finds that the origin of frequency space in the transformed array appears not at the center (as one
would prefer) but rather at the two ends. If the one-dimensional formalism of Eq. (2) is then
extended to the two-dimensional case, as in Reference 2, one finds that the result of applying a two-
dimensional DFT to a two-dimensional input array is a Fourier transform array whose origin (in
frequency space) lies not in the center of the output picture but rather at the four corners. When one
attempts to use such one- and two-dimensional DFTs and IDFTs to perform convolutions and
cross-correlations, the situation becomes even more confusing.

In this report, we present an alternative derivation of the discrete Fourier transform which
avoids most of the needless complexity of previous treatments and the confusion which follows
therefrom. In addition, we describe and include FORTRAN listings of four programs. These include
a two-dimensional fast Fourier transform (FFT) program, which not only implements the modified
DFT and IDFT to be described below, but also has the interesting property that it can be used to
transform arrays which are much too large to fit within the internal memory of the computer. The
program makes use of the Eklundh fast matrix transposition algorithm,5 for which, to the best of
our knowledge, no FORTRAN translation has ever been published. Such a two-dimensional FFT
makes it possible to Fourier transform even rather large arrays — say 2048 X 2048 complex — on a
microcomputer, provided only that the attached hard disk has space sufficient to store the entire
input (output) array. Recently, Serzu and Moon6 described their FORTRAN translation of the
Anderson algorithm;7 this program also permits Fourier transformation of very large two-
dimensional arrays. However, the program described in the present report is simpler conceptually
and requires approximately 170 fewer lines of FORTRAN to code. Furthermore, according to
Anderson, the method described below "is as efficient as the method of this [Anderson's] paper, and
may be desirable if special purpose FFT hardware is to be employed."

The remainder of this report is organized as follows. In Section 2 we derive the modified one-
dimensional DFT and IDFT from the corresponding continuous transforms. These modified quanti-
ties have the property that the basic sampled interval is placed symmetrically about zero in both
direct and inverse (transformed) space. The straightforward calculation which follows shows that the
modified discrete transforms are exact inverses of one another, just as are the conventionally defined
quantities [see Eq. (2)]. Finally, we demonstrate the proper use of the one-dimensional modified
DFT and IDFT in computing a convolution which is free of wraparound error. In Section 3 we
extend the results of Section 2 to the two-dimensional case, with particular emphasis being placed on
a description of the operation of the two-dimensional FFT program, FFT2D. These results are
followed, in Section 4, by a brief summary of the programs included and the mathematical quantities
they calculate. A complete listing of all programs discussed follows in the Appendix.

2. ONE-DIMENSIONAL FOURIER TRANSFORMS

The forward and inverse Fourier transforms are given by Eq. (1). To obtain the continuous
Fourier transform in terms of the modified DFT, we proceed as follows:

Write the Fourier integral over the infinite interval as a sum of integrals over consecutive finite
intervals of length X, and let the basic interval coincide with [-X/2, X/2]. Choose X large enough to
ensure that the integral over the basic interval is already a good approximation to the infinite
integral. We obtain

F(u) = f °° f(x)e-i2"-uxdx
•'-00

2, f(m'+l/2)X .„
= X I f(x)e-l2•xdx

„,«=.» V-1/2)X

Now setting x' = x - m'X ,

F(u)= £ fX/2 f(x' + m'X)e-i2'ru(x'+m'x)dx'
J-V It

m--<* •'-X/2

£ [£ f(x + m'X)e-'2'rum'x]e-i2'ruxdx (4)
m'=-<»

'X/2

•'-X/2

Next, evaluate F(u) on the evenly spaced set of points

um = [m - (M - l)/2]Au = [m - (M - l)/2]/X

where

M = sufficiently large even integer (determined below)
*

m = 0,1 M-l

U = MAu = M/X (see Figure 1).

Choose U large enough to ensure that F(u) is essentially zero outside the interval [-U/2, 11/2]. This is
accomplished by choosing M sufficiently large. Note carefully that the distance between adjacent
sample points in frequency space is suggested by the Sampling Theorem:8 If f(x) is identically zero
outside the interval [-X/2, X/2], then it is possible to recover F(u) arbitrarily accurately in terms of
samples spaced at intervals Au = 1/X:

-X/2

-U/2

F(u)

U/2

Au

X = NAx

Ax= 1/U

N- 1

where k = 0.1 N- 1

U = NAu

Au = 1/X

N- 1

2

where m = 0,1 N -

um = <m- "jf »Au

Figure 1. Calculation of the forward and inverse Fourier transforms in one dimension.

4

F(um) = f °° f(x)e'i27rUmXdx
•'.00

00

= (X2 [2 f(x + m'X)e-i2'rumni'X]e-i2Tumxdx

fp(x)

fp(x) =2 f(x + m'X)e-iMm - (M - 1)/2](1/X)m-X
m'=-oc

2 f(x + m'X)e-i27rmm'ei,r<M - 1)m'
m--"

2 (-l)m'f(x • m'X)
m=-

We then obtain
F(um) = f °° f(x)e'i27rUmXdx

•'-oo

= f [2 (-l)m'f(x + m'X)]e-i27rUn'xdx
«/_V It

Ux)

where

(5)

M - 1
um = (m - ~2~ ^X

M = even integer

m = 0,l...,M-l

The above result is exact. Note that f_(x) = f(x) for x e [-X/2, X/2] if and only if f(x) vanishes
outside this interval. If f(x) is non-zero outside this interval, then calculating F(um) by using a
truncated approximation to fp(x) is equivalent to truncating the defining integral. This resulting
truncation error is usually referred to in the literature as aliasing in the time domain1 (i.e., direct
space).

As before, assume that X is chosen large enough that f(x) is effectively zero outside the interval
[-X/2, X/2]. Accordingly, approximate fp(x) by the n = 0 term in its expansion; i.e., set fp(x) = f(x).
Then calculate F(um) approximately using the midpoint rectangle rule (see Figure 1):

F(Um)= / fp(x)e-i27rUmXdx
-X/2

= f* f(x)e-i27rUmXdx
J -Y It

where

-X/2

N-l
X f(xk)e"l2,rUmXkAx (6)
k=0

N - 1
xk = (k - ——)Ax and X = NAx

We are immediately confronted by the problem of properly choosing Ax, or equivalently N, since
N = X/Ax. According to the Sampling Theorem, if F(u) is zero outside the interval [-U/2, U/2],
then it is possible to recover f(x) arbitrarily accurately using samples spaced at intervals Ax = 1/U.
To obtain a high quality approximation to the above integral using the midpoint rectangle rule, one
therefore chooses the rectangle width Ax = 1/U. The non-zero rectangle width causes an error in the
calculation of F(um); this error is usually called aliasing in the frequency domain.9 Assuming now
that F(u) is essentially zero outside the interval [-U/2, U/2] and Ax = 1/U, the foregoing arguments
give

M = U/Au = UX\ .. . ,. . w XT
XT v, A vii which implies that M = N N = X/Ax = XU)

Using M = N in the summation in Eq. (6) gives

N-l
F(um)~ 2 f(xk)«"l2'Vl^BFI(uJ (7)

k=0

N- 1
(m-) V 2 ' N-l

umxk = ^ ' (k - —— >Ax

(m - c)

= (l/NXm-cXk-c)

= (l/N)(c2-mc-kc + mk)

Inserting into Eq. (7), we have

Fa(um) =r*2jrIWc2 - mc>Ax • % f(xk)e-i(27r/N)<mk " kc>
k=0

=e-i(27r/NXc2-mc).xJ(l/N) j fCx^e-^WNJmk i (g)
' k=0 *

where

f(xk) = f(xk)ei(2,r/N>kc

and

c = (N-l)/2

The above equation defines the modified discrete Fourier transform, Fa(um). According to this
equation, to obtain a DFT which places the zero frequency in the center of the plot, one should
premultiply the data samples f(xk) by a phase factor, perform the conventional DFT [see Eq. (2)],
and then postmultiply the result by a second phase factor. In the following, the abbreviation MDFT
will be used to designate the modified discrete Fourier transform defined in Eq. (8) above.

The two most important relations in connection with the DFT are: U = 1/Ax and Au = 1/X. U
and Au are adjusted simply by varying X and Ax. If f(x) is identically zero outside [-X/2, X/2], one
can obtain finer resolution (Au) in the frequency domain simply by extending the region of integra-
tion and filling the newly created space left and right of the old integration interval with zeros. It
should also be carefully noted that if f(x) is not identically zero outside [-X/2, X/2], then greater
accuracy in the calculation of F(um) can be achieved by using more than just one term in approxi-
mating fp(x) in Eq. (5) [see Eqs. (5) and (6) and the intervening discussion].

By Eq. (1), the inverse Fourier transform is given by

f(x) = FT-^F^ = f °° FMe-i2•^

fU/2
- I F(u)e-l2'ruxdu

•'-U/2

where U is chosen such that F(u) is effectively zero outside the interval [-U/2, U/2]. Reasoning by
analogy with Eq. (6), we obtain

fu/2
f(xk) ~ I F(u)el2'ruxkdu

J _IT/1

N-l
2 F(um)el2,ru»x'<Au = fa(xk)

m=0

Recalling that

umxk = (1/N)(c2 - me - kc + mk) [from before Eq. (8)],

we obtain

N-l
-I2JTU„ f.(Xk) = 2 F(um)e-l2'ru»'x''Au

m=0

N-l
= ei(2^/N)(c2-kc) . (1/X) •) £ F'(um)ei(2T/N)km I (9)

(m=0)

where

F'(um)=F(um)e-i(2T/N)mc

The above equation defines the modified inverse discrete Fourier transform (MIDFT), fa(xk). It
should be compared with the conventional expression in Eq. (2).

From the theory of the (continuous) Fourier transform, it is known that FT"1 (FT[f(x)]} = f(x).
We now show that an analogous relationship holds for the modified discrete Fourier transform; i.e.,
MIDFT JMDFT[f(xk)][=f(xk):

MDFT[f(xk)] = Fa(um) [from Eq. (8)]

ga(xk) = MIDFT JMDFT[f(xk)][

= MIDFTJFa(um)j

(N-l)
= eK2WNXc2-kc). (i/x) • ; 2 [Fa(um)e-i(2'r/N)iiic]ei(2ir/N)kinl (10)

(m=0 j

where the last line was obtained by using Eq. (9). Inserting the expression for Fa(um) [Eq. (8)] into
the braced expression above, we have

N-l
"1cm \-\ = X [Fa(um)e-i(2WN)mc]ei(2,r/N)kr

I ' m=0

N-l , N-l
= X [e-i(2WNKc2-mc).X.<j(l/N) 2 [f(xk')ei(2T/N)k'c]

m=0 k'=0

. e-i(2n-/N)mk'>e-i(2jr/N)mc] ei(27r/N)km

N-l (N-l 1
= (X/N)e-»(2"-/N)c2 £ f(Xk,)ei(2WN)k'c) £ e^/NXc-k'-c+kJm'

k'=0 (m=0

N6 kk'
= Xe-i(2T/N)c2 f(Xk)ei(2^/N)kc

Inserting this result into Eq. (10), we obtain

ga(xk)=MIDFT{MDFT[f(xk)]}

= f(xk) .

Note the remarkable fact that the MDFT and the MIDFT, which are derived as approximations to
the forward and inverse continuous Fourier transforms, turn out to be exact inverses of one another
as well.

The convolution, h(x), of two functions f(x) and g(x) is given by

h(x) = f(x) * g(x)

= f °° f(xOg(x - xOdx'

= f" f(x - xOg(x')dx'
•Oso

H(u) = f °° h(x)e-'2•xdx
•too

= f" [f"f(x-x')g(x')dxTe-i2'n«dx
•OJO •Lee

At this point, in pursuit of a numerical method for calculating the convolution integral using the
MDFT, one might be tempted to replace the above integrals over x and x' by discrete sums. If one
chooses the sampling points xk = [k - (N - I)/2]Ax and xk- = [k' - (N - l)/2]Ax as before, then the
argument x - x' (which is required in the convolution integral) goes over to xk - xk<, which repre-
sents a set of points which interlace those defined by xk and x'k-. Because of this difficulty and also
for reasons of simplicity, approximation of the above integrals by discrete sums is deferred until
later. Interchanging the order of integration in the above expression for H(u), we obtain

H(u) sf" dx'g(xO [f °° f(x - xOe-^^Mx]

Calling the above bracketed expression I and setting x" = x - x', we obtain

1= f°0f(x")e-i2'ru(x' + x")dx''
•'-00

= e-i27TUX' (° f(X>-i27rUX"dXW

•'-oc

which gives H(u) = F(u) G(u). The convolution integral h(x) = f(x) * g(x) can therefore be computed
by Fourier transforming f and g, forming the product of their transforms, and then inverse trans-
forming the resulting product. To do the same calculation numerically, it would appear at first
glance that one needs only to replace all continuous Fourier transforms (both forward and reverse)
by their discrete counterparts and then to repeat the sequence of operations listed above. To under-
stand clearly why the above prescription gives the wrong answer, consider the following. Assume
that the functions f and g are both space-limited to the interval [-X/2, X/2] (see Figure 2). Then

f(x) 9W

-X -X/2 X/2 -X/2 X/2

h(x) = f(x) • g(x)

»M

-X 0 x

Figure 2. Relationship of the width of the convolution to that of its constituent functions.

their convolution h = f * g is space-limited to [-X, X], i.e., to an interval twice as long as that
associated with either f or g. If one computes N-point modified discrete Fourier transforms of both f
and g on the interval [-X/2, X/2] and then calculates h by means of the procedure described
immediately above, one obtains an h at N points on the interval [-X/2, X/2] rather than at the 2N
points required on the full interval [-X, X]. In addition, the values of h obtained at the N points are
corrupted by what is commonly known as wraparound error.10

To obtain a good numerical approximation to h(x) = f(x) * g(x) which is free of wraparound
error on the full interval [-X, X], one should proceed as follows:

10

Take both functions f and g to be space-limited to the interval [-X/2, X/2] and
evaluate each at the N equally spaced points xk = [k - (N-1)/2]X/N, where
k = 0,1,...,N - 1. Surround each sequence of N samples with N zeros, N/2 on the left
and N/2 on the right (see Figure 2), so that f and g are now defined over the longer
interval [-X, X].

Compute the 2N-point MDFTs of the functions f and g defined above and then form
the product of the two transforms.

Compute the 2N-point MIDFT of the product. The result is an approximation to the
function h(x) = f(x) • g(x) at the 2N equally spaced points xk = [k - (2N - 1)/2]X/N,
where k = 0,1,...,2N - 1. Since both truncation error and wraparound error have been
eliminated from the above calculation, the former by the assumption that both f and
g are space-limited and the latter by the symmetric padding of the original functions
with zeros, the accuracy of the final results will be limited only by the rectangle-rule
integration error associated with the computation of the required modified discrete
Fourier transforms.

11

3. TWO-DIMENSIONAL FOURIER TRANSFORMS

The forward and inverse Fourier transforms in two dimensions are given, respectively, by

F(u, v) = FTJf(x, y)| = jj °° f(x, y)e-i2w<ux+vy)dxdy
-OO

f(x,y) = FT-1 JF(u,v)j =jfjf °° F(u, v)ei2'r<ux+vy)dudv .
JOB

By analogy with Section 2, we obtain the two-dimensional continuous Fourier transform in terms of
the two-dimensional modified DFT by proceeding as follows:

Write the Fourier integral over the infinite plane as an infinite sum over rectangles of size XY.
Choose the central rectangle (centered on the origin) large enough to ensure that the integral over
this rectangle is already a good approximation to the integral over the infinite plane.

F(u, v) -\\ °° f(x> y)e-i27r(ux+vy)dxdy

.00

(m'+l/2)X (n'+l/2)Y

2 2/ / f(x, y)e-i2jr<ux+vy)dxdy .

m'=^o „'=-» (m'-l/2)X (n'-l/2)Y

Now set x' = x - m'X and y' = y - nT, interchange the order of summation and integration, and
finally drop the primes on x' and y\ We then obtain

X/2 Y/2 00

F(u,v)= / / j 2 2 f(x + m'X, y + nT)

-X/2 -Y/2 m'=-°c n'=-°°

. e-i27r(um'X + vnT) > e-i2^ux + vy)(jxdy

By anology with the one-dimensional case, evaluate F(u,v) at the points

um = [m-(N-l)/2]/X
m,n = 0, 1, ...,N - 1

vn =[n-(N-l)/2]/Y

Substituting into the above equation, we obtain

X/2 Y/2 00 00

F(um»vn)= f / j 2 2 (-l)m'+n'f(x+m'X,y+nT)|e-i2'Kunlx+vny)dxdy

-X/2 -Y/2 m'=-» n'=-»

= fp(x,y) . [c.f. Eq.(5)]

13

The above result is exact. By analogy with the one-dimensional case, choose the central rectangle
large enough to ensure that the truncation error which results from setting fp(x, y) = f(x, y) is small:

X/2 Y/2

F(um,vn)= j f fp(x, y)e-i2T(uinx+vny)dxdy

-X/2 -Y/2

X/2 Y/2

« f f f(x, yje-^m^nytoxdy

-X/2 -Y/2

N-l N-l

* 2 2 f(xk> y£)e-i2'r<umxk+vnyJl)AxAy • Fa(um, vn)

k=0 1=0

and the last line above follows from use of the midpoint rectangle rule in two dimensions, as
illustrated in Figure 3. The two-dimensional forward transform is easily evaluated by iteration:

N-l N-I

Fa(um,vn)= X 2 f(xk y£)e"i2'r<un1xk+vnyJl)AxAy

k=0 Jl=0

N-l

2 e-i27rVntyAy

1=0

N-l

2 f(xk, y^e-^^k Ax

k=0

Fy(um. yO

(ID

Since the above quantity is simply a sequence of two one-dimensional transforms [see Eqs. (6) and
(8)1 one can write the discrete approximation without further calculation as:

1 N"' (Fa(um, vn) - Ye-iGir/NMc2-!*) . _ £ hxe*2*IWf?-nc)

1=0

•— 2 U(xk, y^e^WNJkc . e-i(2»r/N)mk[e^Tr/Nl^ci e-i(27r/N)nA

k=0 l * '

1 N-l N-l
XYe-i(2T/NX2c2-(m+n)c] . _ V £ f^ j e-i(27r/N)(mk+nK.)

N k=0 fi,=0

(12)

14

where

f'(xk, yz) = f(xk, y^^/NXk+JDc .

The above equation defines the two-dimensional, modified discrete Fourier transform, Fa(um, vn).

, V f (x. V)

CM

>
I

T.

• I •

• :•

CM

—I—
• I •

I
• I •

-X/2

-_T_.

• I •
 L_.

• :•
—i—
• i •
 L_.

I
• I •

V

i 1

F (u, v)

CM

>
•

T
1

,1
1
1

• •
T

1
J

1
1

•

• • • •

1 1
• 1

1
• • 1

1
• 1 U

•
1
1 • •

1
1 •

-V
/2

 1
X/2 -U/2 U/2

X = NAx

Y = NAy

Ax = 1/U

Ay = 1 /V

xk = [k - (N - 1)/2)Ax

y£=[1 -(N-1)/2]Ay

U = NAu

V = NAv

Au = 1/X

Av = 1 /Y

um = [m-(N-1)/2]Au

n-[n-(N- 1)/2]Av

Figure 3. Calculation of the forward and inverse Fourier transforms in two dimensions.

Assume now that the function f(x, y) has been sampled on an N X N grid of points (N = even
integer), as shown in Figures 3 and 4, and that the resulting data have been stored in a computer disk
file on a row-by-row basis, with one row to a record. According to Eq. (11), a two-dimensional
MDFT of the data can be obtained simply by subjecting each row to a one-dimensional Fourier
transform and then repeating the procedure on the columns. In practice, the column transforms
present a problem since the elements comprising a single column are stored in N separate records;
retrieving from the disk the one piece of data required from each record turns out to be extremely
time consuming. This problem is solved by using the Eklundh algorithm,5 which makes possible the

15

fast transposition of matrices of size N X N, provided that N is a power of two. How a fast matrix
transposition solves this problem will become clear shortly.

With the above in mind, assume that the function f(x, y) has been sampled on an N X N grid of
points, where N is now a power of two, and that the resulting data have been stored in a disk file
after the manner described above. The required two-dimensional MDFT is then obtained as follows
(see Figure 4):

a. Calculate the one-dimensional MDFT of each row of the matrix using the
subroutine FFT1D. This routine evaluates Eq. (8) but omits the factor X. Note
that FFT1D is contained within the subroutine FFT2D. After completion of
the N transforms, the disk file contains the samples of Fy(um, y^).

b. Use the Eklundh fast matrix transposition algorithm, which is implemented in
the subroutine TRANSP within FFT2D, to transpose the matrix. What were
previously columns now become rows.

c. Reflect the elements of each row about the vertical axis. This ensures that the
index i increases from left to right (see Figure 4).

d. Repeat the use of FFT1D on each of the resulting rows.

e. Reflect, once again, the elements of each row about the vertical axis.

f. Transpose the matrix a second and final time. The disk file now contains the
samples of F(um, vn). The data are stored on a row-by-row basis, with one row
to a record.

The MIDFT in two dimensions is obtained from Eq. (9) in a manner completely analogous to
that in which the forward transform in two dimensions was obtained from Eq. (8). We obtain

N-l N-l
fa(xk, yjl) = (l/XY)ei(2WN)[2c2-(k+£)c] . £ J p(Ufflj Vn)e«2,r/N)<km+£n) (13)

m=0 n=0

where

FXUm, vn) = F(um, vn)e-i(2*/N)(m+n)c .

To calculate the MIDFT in two dimensions, in practice, one simply repeats the procedures a through
f after altering the parameter list of FFT1D so that its output is the one-dimensional MIDFT.

16

i

v

i
f(VV

k = 0 k = N-1

1
z
II

• • • •
o*

• • • •

• • • • X

o
II

• • • •

FV<um-V

m = 0 m = N-1

I
z • • • •
II

• • • •

• • • • u

o • • • •
II

0
F("m-vn>

m = 0
i

V

m = N-1

1
z • • • •
II
c

• • • •

• • • • u

o • • • •

Figure 4. Calculation of the two-dimensional MDFT.

In two dimensions, as in one, the MDFT and MIDFT are exact inverses of one another. The
proof is straightforward.

Two-dimensional convolution is completely analogous to that in one dimension [see the pro-
gram CONVOLVE listed in the Appendix and described in Section 4.4]. To prevent wraparound
error in the computation of h(x, y) = f(x, y) * g(x, y), one proceeds as follows. Assume that one
has two matrices of size N X N which contain samples of f and g. Each matrix is expanded to size
2N X 2N by placing the initial array into the center of a 2N X 2N array and then filling the "collar"
region with zeros. The two-dimensional convolution, free of wraparound error, is then obtained by
Fourier transforming the two new 2N X 2N matrices, multiplying the two transforms on a point-by-
point basis, and finally inverse transforming the resulting matrix.

17

4. PROGRAM DESCRIPTIONS AND SAMPLE CALCULATIONS

The Appendix contains printouts of four FORTRAN programs described below: FFT2D,
TTRANSP, TFFT2D, and CONVOLVE.

4.1 FFT2D

The subroutine FFT2D calculates either the forward or inverse, modified (in the sense discussed
above), two-dimensional, discrete Fourier transform using the fast Fourier transform algorithm. The
subroutine accepts as input the single precision, real data stored in two separate disk files, say
REAL.DAT and IMAG.DAT, and assumes that these data represent the real and imaginary parts,
respectively, of the samples of the function to be transformed. Each file contains N records of N
samples each, with each record containing one row of the matrix of samples. N is limited to a power
of two (N = 2NPOW) and must, in addition, satisfy the inequality 4 ^ N ^ 220.

If in the parameter list of FFT2D we set IDIR = +1, then a Fourier transform in the forward
direction is computed. The 'subroutine assumes, in this case, that the input data contained in
REAL.DAT and IMAG.DAT represent the real and imaginary parts, respectively, of the samples of
the complex function f(x, y) on the N X N grid of points

N- 1 X N- 1 Y
(xk, y*) = [(k - —) - , (i - —) -] , (14)

where k,£ = 0, 1,...,N - 1 and X and Y are as in Figure 3. The sampling indices (k,Jt) are related to
the row and column indices (ROW, COL) of the input files via

k = COL - 1
I = N - ROW

If the input function f(x, y) is real, then the file IMAG.DAT must be filled with zeros. Using the
calculation procedure outlined in Section 3(a) through (0, FFT2D returns, in files REAL.DAT and
IMAG.DAT, the real and imaginary parts, respectively, of the samples of the Fourier transform
function F(u,v) on the N X N grid of points

N - 1 U N- 1 V
(um, vn) = [(m - —) - , (n - —) -] , (15)

where m, n = 0, 1,...,N - 1, and U and V are as in Figure 3. Note, according to this figure, that
U/N = Au = 1/X and V/N = Av = 1/Y. The sampling indices (m, n) are easily seen to be related to
the row and column indices (ROW, COL) of the output files via

m = COL - 1
n = N- ROW

19

Mathematically, we have

F(um, Vn) = e-^/N^c2 - (m • n)c]

i N - 1 N - 1 r i
' IX f(Xk;y£)ei(2WN)(k+£)c e-i(2WNKmk + n^) (16)

N2 k = 0 1--0 l J

Note carefully that the above quantity calculated by FFT2D differs from the two-dimensional
MDFT of Eq. (12) by the omission of the leading factor XY.

If in the parameter list of FFT2D we set IDIR = -1, then an inverse Fourier transform is
computed. The subroutine assumes, in this case, that the input data contained in REAL.DAT and
IMAG.DAT represent the real and imaginary parts, respectively, of the samples of the complex
function F(u,v) on the N X N grid of points (um, vn), as defined previously. On output, the files
contain the real and imaginary parts of the samples of the inverse Fourier transform function f(x,y)
on the N X N grid of points (xk, y^), also as defined previously. Mathematically, we have in this
inverse case

f(xk, y9) = e«2WN)[2c2 - (k *<l)c]

N-lN-lf 1
* 2 2 F(Um,vn)e-i(2WNXm + n)c -e^Tr/NKkm^n) (17)

m=0n=0l J

Note here that the above inverse quantity calculated by FFT2D differs from the two-dimensional
MIDFT of Eq. (13) by the omission of the leading factor 1/XY.

According to Section 3(a), both the forward and inverse, modified, one-dimensional DFTs are
computed by the subroutine FFT1D, which implements Eqs. (8) and (9) (minus their factor X). This
routine, in turn, calls directly or indirectly three additional routines named FASTF, FASTG, and
SCRAM. These three routines, which calculate the forward and inverse conventional, one-
dimensional DFTs, were written by Donald Monro11 of Imperial College and are republished here
by permission of the Royal Statistical Society, London.

A quick comparison of the array storage requirements for FFT2D and TRANSP shows that
nearly all the array space required by FFT2D is required by the component subroutine TRANSP,
which performs fast matrix transposition using the Eklundh algorithm. In fact, of the approximately
4N(M + MPOW + 10) bytes of array storage required by FFT2D, a full 4N(M + MPOW + 1) bytes
are needed to execute TRANSP. In these expressions, N is the dimension of the matrix, which must
be a power of two: N = 2NPOW. In addition, M is the number of rows of the matrix operated on in
the internal memory of the computer at one time by TRANSP; it must also be a power of two:
M = 2MPOW. Note that TRANSP will execute properly (though slowly) with M as small as 2, or
equivalently, MPOW = 1. The ratio R = (NPOW/MPOW) is very important in practice since it
determines the amount of I/O required by subroutine TRANSP within FFT2D. As a glance at the
first few lines of this component subroutine will make clear, the number of I/O passes (where an I/O
pass is defined as reading in and writing out all the data exactly once) required by TRANSP is equal

20

to [R], where [R] is shorthand for the smallest integer equal to, or larger than, R. Thus, by way of
example, [4/3] = 2 and [10/5] = 2. In practice, [R] is bounded below by 2 since [R] = [NPOW/
MPOW] = 1 would imply that NPOW = MPOW or equivalently M = N. In such a case, the subrou-
tine TRANSP would be superfluous. Accordingly, one expects no reduction in TRANSP I/O time
for values of MPOW exceeding [NPOW/2]. If, in addition, the computation time required by
TRANSP is only weakly dependent on MPOW, one should expect no reduction in total execution
time for TRANSP for MPOW exceeding [NPOW/2]. This expectation is fully confirmed by timing
tests. More importantly, what is true for TRANSP turns out to be true for FFT2D as a whole. For a
matrix of size N X N, where N = 2NP0W, one finds no reduction in total execution time for FFT2D
for MPOW exceeding [NPOW/2].

To make the foregoing points more concrete, consider an example. For a complex matrix of size
1024 X 1024 (represented in actuality by two 1024 X 1024 real arrays contained in the disk files
REAL.DAT and IMAG.DAT), we have N = 1024 = 210 and, therefore, NPOW = 10. According to
the above considerations, to minimize execution time without wasting any array storage space, one
should choose MPOW = 5. The internal memory required by FFT2D is then given by
4N(2MPOW + MPOW + 10) «190 KB. To this, of course, must be added the space required by the
subroutine package FFT2D and the calling program. Choosing MPOW smaller than 5 will reduce
the internal memory required but also increase the execution time. On the basis of the above, it is
clear that with FFT2D, a 1024 X 1024 complex matrix can easily be Fourier transformed on a
microcomputer having a modest internal memory and a hard disk of no more than ~10-MB capac-
ity. It should be noted carefully, however, that because of the very heavy I/O demands made by
FFT2D, it is extremely important to have a disk with the smallest possible mean access time. This
conclusion follows upon noting that the time required to transfer, say, 4N = 4096 bytes of data
between computer and disk at a rate of 600 KB/s (typical of microcomputer hard disks) is —7 ms;
this time, in turn, is much smaller than the mean access time characteristic of most microcomputer
hard disks.

4.2 TTRANSP

TTRANSP is a test program which allows a prospective user of FFT2D to verify that the fast
matrix transposition subroutine, TRANSP (the last subroutine included in the FFT2D package)
functions without error. For each case (NPOW, MPOW), where NPOW = 2,.... 10 and
MPOW = 1, ..., NPOW, the program generates a matrix of size N X N (= 2NP0W X 2NPOW) con.
taining consecutive integers from 1 to N2, transposes the matrix by means of the subroutine
TRANSP, and then compares the elements of the transposed matrix on a point-by-point basis with
the quantities which should be there if the transposition has been achieved without error. TTRANSP
was run on our DEC MicroVAX II computer with the result that TRANSP was shown to function
flawlessly in all 54 cases tested. This includes matrices up to 1024 X 1024 in size.

43 TFFT2D

TFFT2D allows the user to test the accuracy of FFT2D in performing both forward and inverse
transforms. The forward transform capability is tested by means of a three-step procedure. First,

21

function subprograms FR and FI, representing the real and imaginary parts of the complex function
f(x, y) to be transformed, are used to generate samples of f(x, y) on the grid of Eq. (14) with N = 256
and the samples so produced are then stored in two separate disk files, REAL. DAT and
IMAG.DAT. Second, the disk files are input to FFT2D and a 256 X 256 forward MDFT of the
input data is computed. Upon completion of the execution of FFT2D, the files REAL.DAT and
IMAG.DAT contain the real and imaginary parts, respectively, of the transformed function F(u, v)
evaluated on the grid of points given in Eq. (15). Third, at a small number of points (um,vn), or
equivalently (ROW, COL), specified at the beginning of the program, the Fourier transformed
function F(u, v) is computed directly, but slowly, using Eq. (16); these quantities are then compared
on a point-by-point basis with the corresponding quantities calculated by FFT2D. Although FFT2D
performs all calculations in single precision, the direct, slow calculation must be done in double
precision because the roundoff error in this case propagates much more rapidly than it does in the
case of FFT2D.

As listed in the Appendix, TFFT2D produces the following output in connection with its test of
the forward Fourier transform:

ROW COL RE(SLOW FT) RE(FFT) REL. ERR. IM(SLOW FT) IM(FFT) REL. ERR.

128 151 -0.8556D-03 -0.8556E-03 -0.14D-06 -0.2546D-10 0.2024E-09 -0.89D+01
128 152 -0.8529D-03 -0.8529E-03 -0.14D-06 -0.8735D-10 0.3375E-09 -0.49D+01
128 153 -0.8191D-03 -0.8191E-03 -0.28D-06 -0.1613D-09 0.1217E-09 -0.18D+01
128 154 -0.7577D-03 -0.7577E-03 -0.77D-07 0.1066D-09 0.2260E-09 0.11D+01

In our experience, the numerical results above, with relative errors of approximately 10"7, are typical
of what one encounters in practice with arrays up to 1024 X 1024 in size. It should be borne in mind,
however, that relative errors can be much larger at a sampling point (um, vn) where the Fourier
transform F has a very steep slope. In our tests, we have observed relative errors as large as
approximately 10"5 at such points. Note that the relative errors computed in the case of the imagi-
nary quantities above are irrelevant since F(u, v) is a real quantity.

Since the function f(x, y), which is subjected to discrete Fourier transformation in TFFT2D via
both FFT2D and direct calculation, can be transformed analytically as well, we compare the three
results at one point, say ROW = 128 and COL =151. The function represented by the two function
subprograms FR and FI [where f(x, y) = FR(x, y) + iFI(x,y)] is obviously

16x 16y
f(x, y) = rect(—) rect(-^-) ,

where rect(x) = 1 for -1/2 < x < 1/2, and 0 otherwise. The Fourier transform is easily calculated to
be

XY uX v . vY
F<u' v) = ^H~ smc< ~7Z) sinc(TT) 256 16 16

22

where sinc(x) = (sin 7rx)/7rx. TO obtain F(u, v) at the array point (ROW, COL) = (128, 151), we
must first determine um and vn at this point. From Eq. (15a) and Figure 3, we have

m = COL - 1

n = N - ROW

»m = [m -
N- 1 1

2 -1 X

vn = [" -
N- 1 1

2 -1 Y

Setting N = 256, ROW = 128, and COL = 151, we obtain

m= 150

n= 128

u150X = (150 ~ ^J~) = 22.5

255
v128Y = (128 - —) = 0.5

Hence, the output array cell (ROW, COL) = (128, 151) contains

XY u X v128Y

F(ui50.vi28) = ^ Sinc(16 } SlnC(~l6~ } = (~°-8448 X ^)XY *

Thus, the analytic result and numerically calculated results differ by approximately one percent in
this case. The functions f(x, y) and F(u, v) (the latter calculated by FFT2D) are graphed in Fig-
ures 5(a) and (b).

In the latter part of the program TFFT2D, the inverse transform capability of FFT2D is tested
by invoking FFT2D with IDIR = -1 to inverse Fourier transform the data left in the disk files
REAL.DAT and IMAG.DAT as a result of earlier invocation of FFT2D with IDIR = + 1 (forward
transform). Since these two discrete transforms are exact inverses of one another, we expect the
inverse transform to return us to the sampled version of f(x, y) with which we started. The following
output is produced by this final part of the program:

MIN ABS ERROR OF REAL PART = O.OOOOE+00

MAX ABS ERROR OF REAL PART « 0.4768E-06

MEAN ABS ERROR OF REAL PART = 0.6134E-08

MIN ABS ERROR OF IMAGINARY PART = O.OOOOE+00

MAX ABS ERROR OF IMAGINARY PART - 0.3504E-06

MEAN ABS ERROR OF IMAGINARY PART -= 0.5537E-08

-z

23

where sinc(x) = (sin irx)/irx. To obtain F(u, v) at the array point (ROW, COL) = (128, 151), we
must first determine um and vn at this point. From Eq. (15a) and Figure 3, we have

m = COL - 1

n = N - ROW

N-l 1
"m = [m- —] Y

vn = [n - —] -y

Setting N = 256, ROW = 128, and COL = 151, we obtain

m= 150

n= 128

255
u150X = (150 - —) = 22.5

v128Y = (128 - 2j-) = 0.5

Hence, the output array cell (ROW, COL) = (128, 151) contains
XY u150X v128Y

F(ui50.vi28) = -^ sinc(-^f) sinc(—^~ > * (-08448 X 10"3>XY •

Thus, the analytic result and numerically calculated results differ by approximately one percent in
this case. The functions f(x, y) and F(u, v) (the latter calculated by FFT2D) are graphed in Fig-
ures 5(a) and (b).

In the latter part of the program TFFT2D, the inverse transform capability of FFT2D is tested
by invoking FFT2D with IDIR = -1 to inverse Fourier transform the data left in the disk files
REAL.DAT and IMAG.DAT as a result of earlier invocation of FFT2D with IDIR = + 1 (forward
transform). Since these two discrete transforms are exact inverses of one another, we expect the
inverse transform to return us to the sampled version of f(x, y) with which we started. The following
output is produced by this final part of the program:

MIN ABS ERROR OF REAL PART - O.OOOOE+OO

MAX ABS ERROR OF REAL PART - 0.4768E-06

MEAN ABS ERROR OF REAL PART - 0.6134E-08

MIN ABS ERROR OF IMAGINARY PART - O.OOOOE+00

MAX ABS ERROR OF IMAGINARY PART - 0.3504E-06

MEAN ABS ERROR OF IMAGINARY PART • 0.5537E-08

"Z

23

Q

ii a
— CM
> t-

D5

o *•

I

 c
X I O

i- o
_ CM

I-

3 It

I

T3 a;
X 0 •*- n ID

c o
3

>

m
rsi

X o B e CD - tn LO
L^ ID CNi

25

Before leaving the subject of testing the subroutine FFT2D, we note that it has been run
extensively on the DEC MicroVAX II computer in our laboratory. Mass storage for the computer is
provided by RD-53 and RD-54 disk memory units, both of which have mean access times of 38 ms
and transfer rates of 625 KB/s. Below we list typical CPU and total execution times for FFT2D on
this computer as a function of complex array size and MPOW. Note that the total execution time
includes I/O time whereas the CPU time does not.

Size CPU Time Total Execution
(NXN) (NPOW, MPOW) (s) Time (s)

256 X 256 (8,4) 82 264
512 X 512 (9,5) 320 696

1024 X 1024 (10, 5) 1347 2222

CONVOLVE 4.4

This program computes the convolution of two complex 512 X 512 arrays using procedures 3(a)
through f. For example, we choose f(x, y) = rect[(512/400)(x/X)] rect[(512/400)(y/Y)]. When
sampled on a 512 X 512 grid, this function appears as a 400 X 400 array of ones in the center of a
field of zeros, as ilustrated in Figure 6(a). Figure 6(b), in turn, shows the 1024 X 1024 array which
results from using CONVOLVE to convolve the array of Figure 6(a) with itself.

27

E «
o g

2 §
a 5
M

•5 o

C\l >
O -I
- O

T o
o °

ID £
.c in
I- 3

•3
T

>-l>- c

218 s
m i ^t ^

— £ s 5
8 cr

— (N
x | X <—

218
in

•

if) i «» OJ — ,— _ lfl
:j

* n
^ c

c :>-
T3 X 4 "~ 33

C 3
0 - > u X c
a 'X,

CD
o
CD
(Nl

29

5. CONCLUSION

A simplified treatment of the one-dimensional DFT has been provided and applied to the case
of the two-dimensional DFT. Specific rules for computer implementation using fast algorithms for
Fourier transformation and matrix transposition have also been given. Note that the formulation
given here for the discrete transforms differs from general convention in that the basic discrete
interval is placed symmetrically about zero in both direct and transformed spaces.

31

REFERENCES

1. E.O. Brigham, The Fast Fourier Transform, Englewood Cliffs, N.J.: Prentice-Hall (1974),
Ch. 6.

2. P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, New York: Academic Press
(1975), pp. 185-201.

3. J.W. Cooley, P.A.W. Lewis, and P.D. Welch, "Application of the fast Fourier transform to
computation of Fourier integrals, Fourier series, and convolution integrals," IEEE Trans.
Audio Electroacous. AU-15, 79-84 (June 1967).

4. Brigham, op. cit., p. 134.

5. J.O. Eklundh, "A fast computer method for matrix transposing," IEEE Trans. Comput. C-21,
801-3 (July 1972).

6. M.H. Serzu and W.M. Moon, "Two-dimensional fast Fourier transform for large data matri-
ces," Computer Phys. Commun. 52, 333-6 (1989).

7. G.L. Anderson, "A stepwise approach to computing the multidimensional fast Fourier trans-
form of large arrays," IEEE Trans. Acoust. Speech Signal Process. ASSP-28, 280-4 (1980).

8. R.J. Collier, C.B. Burckhardt, and L.H. Lin, Optical Holography, New York: Academic Press
(1971), Ch. 19.

9. Brigham, op. cit., Sec. 5-3.

10. Brigham, op. cit., Sec. 7-3.

11. D.M. Monro, "Complex discrete fast Fourier transform," Appl. Statist. 24, 153-60 (1975).

33

APPENDIX

SUBROUTINE FFT2D(IDEV1, IMARK1, IDEV2, IMARK2, IDIR, MPOW, M,
& NPOW, N, NHALF, IP, IPP, IPAIR, IROWNR, ROWS, XREAL, XIMAG,
& DC, DS, DCC, DSS)

C
C THIS SUBROUTINE CALCULATES EITHER THE FORWARD OR INVERSE, MODIFIED,
C TWO-DIMENSIONAL DFT USING THE FFT ALGORITHM AND THE EKLUNDH FAST
C MATRIX TRANSPOSITION ALGORITHM.
C

INTEGER IP(MPOW, NHALF), IPP(MPOW, NHALF), IPAIR(MPOW),
& IROWNR(M)

REAL ROWS(M, N), XREAL(N), XIMAG(N)
DOUBLE PRECISION DC(N), DS(N), DCC(N), DSS(N), PI,

& DFAC1, DFAC2, DARG1, DARG2
C

DATA PI /3.1415926535897932D0/
DFAC1 «= (2.0D0 * PI) / DFLOAT(N)
DFAC2 = DFLOAT(N - 1) / 2.0D0

C
C CALCULATE PRE- AND POST-MULTIPLICATION FACTORS USED IN CALCULATING
C MODIFIED, ONE-DIMENSIONAL DFT
C

DO 10 I = 1, N
DARG1 - DFAC1 * DFAC2 * DFLOAT(I - 1)
DARG2 = DARG1 - DFAC1 * DFAC2 * DFAC2
DC(I) «= DCOS(DARGl)
DS(I) - DSIN(DARGl)
DCC(I) - DCOS(DARG2)
DSS(I) - DSIN(DARG2)

10 CONTINUE
C
C CALCULATE MODIFIED, ONE-DIMENSIONAL DFTS OF INDIVIDUAL ROWS
C

DO 20 I = 1, N
READ (IDEV1, REC = I) XREAL
READ (IDEV2, REC - I) XIMAG
CALL FFT1D(XREAL, XIMAG, DC, DS, DCC, DSS, N, IDIR)
WRITE (IDEV1, REC - I) XREAL
WRITE (IDEV2, REC - I) XIMAG

20 CONTINUE
C
C TRANSPOSE COMPLEX MATRIX (STORED IN TWO SEPARATE FILES)
C

CALL TRANSP(IDEV1, IMARK1, MPOW, M, NPOW, N, NHALF, IP, IPP,
& IPAIR, IROWNR, ROWS, XREAL)

CALL TRANSP(IDEV2, IMARK2, MPOW, M, NPOW, N, NHALF, IP, IPP,
& IPAIR, IROWNR, ROWS, XIMAG)

C
C "REFLECT" EACH ROW ABOUT CENTER AND CALCULATE MODIFIED, ONE-DIMENSIONAL
C TRANSFORM; "REFLECT" SECOND TIME ABOUT CENTER
C

DO 50 I « 1, N
READ (IDEV1, REC = I) XREAL
READ (IDEV2, REC - I) XIMAG
DO 30 J * 1, NHALF

TEMPREAL - XREAL(J)
TEMPIMAG - XIMAG(J)
XREAL(J) - XREAL(N + 1 - J)
XIMAG(J) - XIMAG(N + 1 - J)
XREAL(N + 1 - J) - TEMPREAL
XIMAG(N + 1 - J) • TEMPIMAG

A-l

30 CONTINUE
CALL FFT1D(XREAL, XIMAG, DC, DS, DCC, DSS, N, IDIR)
DO 40 J - 1, NHALF

TEMPREAL = XREAL(J)
TEMPIMAG = XIMAG(J)
XREAL(J) = XREAL(N + 1 - J)
XIMAG(J) = XIMAG(N + 1 - J)
XREAL(N + 1 - J) • TEMPREAL
XIMAG(N + 1 - J) = TEMPIMAG

40 CONTINUE
WRITE (IDEV1, REC - I) XREAL
WRITE (IDEV2, REC = I) XIMAG

50 CONTINUE
C
C TRANSPOSE COMPLEX MATRIX SECOND AND FINAL TIME
C

CALL TRANSP(IDEV1, IMARK1, MPOW, M, NPOW, N, NHALF, IP, IPP,
& IPAIR, IROWNR, ROWS, XREAL)

CALL TRANSP(IDEV2, IMARK2, MPOW, M, NPOW, N, NHALF, IP, IPP,
& IPAIR, IROWNR, ROWS, XIMAG)

C
RETURN
END

C
C
C **
c
c

SUBROUTINE FFT1D(XREAL, XIMAG, DC, DS, DCC, DSS, N, IDIR)
C
C THIS SUBROUTINE CALCULATES EITHER THE FORWARD OR INVERSE, MODIFIED,
C ONE-DIMENSIONAL DFT USING THE FFT ALGORITHM.
C

REAL XREAL(N), XIMAG(N)
DOUBLE PRECISION DC(N), DS(N), DCC(N), DSS(N), DXREAL,

& DXIMAG, DIDIR
C

DIDIR - DFLOAT(IDIR)
C
C MULTIPLY INPUT DATA BY PRE-MULTIPLICATION PHASE FACTOR
C

DO 10 I = 1, N
DXREAL - XREAL(I)
DXIMAG - XIMAG(I)
XREAL(I) •* DXREAL * DC(I) - DIDIR * DXIMAG * DS(I)
XIMAG(I) - DXIMAG * DC(I) + DIDIR * DXREAL * DS(I)

10 CONTINUE
C
C CALCULATE CONVENTIONAL, ONE-DIMENSIONAL DFT
C

CALL FASTF(XREAL, XIMAG, N, IDIR)
C
C MULTIPLY TRANSFORMED DATA BY POST-MULTIPLICATION PHASE FACTOR
C

DO 20 I - 1, N
DXREAL - XREAL(I)
DXIMAG - XIMAG(I)
XREAL(I) - DXREAL * DCC(I) - DIDIR * DXIMAG * DSS(I)
XIMAG(I) - DXIMAG * DCC(I) + DIDIR * DXREAL * DSS(I)

20 CONTINUE

A-2

RETURN
END

C
C
c **
c
c

SUBROUTINE FASTF(XREAL, XIMAG, ISIZE, ITYPE)
C
C SOURCE: DONALD H. MONRO, "COMPLEX DISCRETE FAST FOURIER
C TRANSFORM", APPLIED STATISTICS 24(1975)153-160.
C
C THIS SUBROUTINE CALCULATES EITHER THE FORWARD OR INVERSE, CONVENTIONAL,
C ONE-DIMENSIONAL DFT OF A SEQUENCE OF LENGTH ISIZE — WHERE ISIZE IS A
C POWER OF 2 — USING THE SANDE-TUKEY VERSION OF THE FFT ALGORITHM.
C

C
c
c
c
c
c
c
c
c
C
c
c
c
C
c
c
c
c

PARAMETERS:

XREAL(ISIZE)

XIMAG(ISIZE)

ISIZE

ITYPE

INPUT: THE REAL PART OF THE ORIGINAL SEQUENCE.
OUTPUT: THE REAL PART OF THE TRANSFORM.

INPUT: THE IMAGINARY PART OF THE ORIGINAL SEQUENCE.
OUTPUT: THE IMAGINARY PART OF THE TRANSFORM.

INTEGER LENGTH OF TRANSFORM. MUST BE POSITIVE
AND A POWER OF 2. MUST ALSO BE GREATER THAN OR EQUAL
TO 4 AND LESS THAN OR EQUAL TO 2 ** 20.

TYPE OF TRANSFORM AS INDICATED BY AN INTEGER
CONSTANT. A FORWARD TRANSFORM IS FOUND IF
ITYPE IS POSITIVE, INVERSE IF NEGATIVE. IF
ITYPE IS ZERO, NO TRANSFORM IS DONE.

C RADIX 4 COMPLEX DISCRETE FAST FOURIER TRANSFORM WITH
C UNSCRAMBLING OF THE TRANSFORMED ARRAYS
C

REAL XREAL(ISIZE), XIMAG(ISIZE)
C
C CHECK FOR VALID TRANSFORM SIZE
C

II - 4
C

DO 20 K = 2, 20
IPOW - K
IF (II - ISIZE) 10, 40, 30

10 II - II * 2
20 CONTINUE
C
C IF THIS POINT IS REACHED A SIZE ERROR HAS OCCURRED
C
30 RETURN
C
C CALL FASTG TO PERFORM THE TRANSFORM
C
40 CALL FASTG(XREAL, XIMAG, ISIZE, ITYPE)

A-3

c
C CALL SCRAM TO UNSCRAMBLE THE RESULTS
C

CALL SCRAM(XREAL, XIMAG, ISIZE, IPOW)
C

RETURN
END

C
C
C **
c
c

SUBROUTINE FASTG(XREAL, XIMAG, N, ITYPE)
C
C SOURCE: DONALD M. MONRO, "COMPLEX DISCRETE FAST FOURIER
C TRANSFORM", APPLIED STATISTICS 24(1975)153-160.
C
C RADIX 4 COMPLEX DISCRETE FAST FOURIER TRANSFORM WITHOUT UNSCRAMBLING,
C SUITABLE FOR CONVOLUTIONS OR OTHER APPLICATIONS WHICH DO NOT REQUIRE
C UNSCRAMBLING. SUBROUTINE FASTF USES THIS ROUTINE FOR TRANSFORMATION
C AND ALSO PROVIDES UNSCRAMBLING.
C

REAL XREAL(N), XIMAG(N)
DATA ZERO, HALF, ONE, ONE5, TWO, FOUR /0.0, 0.5, 1.0, 1.5,

& 2.0, 4.0/
DATA PIE /3.141592654/
IFACA = N / 4
IF (ITYPE) 10, 170, 30

C
C IF THIS IS TO BE AN INVERSE TRANSFORM, CONJUGATE THE DATA
C
10 DO 20 K = 1, N

XIMAG (K) «= -XIMAG (K)
20 CONTINUE
C
30 IFCAB = IFACA * 4
C
C DO THE TRANSFORMS REQUIRED BY THIS STAGE
C

Z - PIE / FLOAT(IFCAB)
BCOS - -TWO * SIN(Z) ** 2
BSIN - SIN(TWO * Z)
CW1 - ONE
SW1 - ZERO

C
DO 80 LITLA - 1, IFACA

DO 60 10 - LITLA, N, IFCAB
C
C THIS IS THE MAIN CALCULATION OF RADIX 4 TRANSFORMS
C

11 - 10 + IFACA
12 - II + IFACA
13 - 12 + IFACA
XSO - XREAL(IO) + XREAL(I2)
XS1 - XREAL(IO) - XREAL(I2)
YSO - XIMAG(IO) + XIMAG(I2)
YS1 - XIMAG(10) - XIMAG(12)
XS2 - XREAL(Il) + XREAL(I3)
XS3 - XREAL(Il) - XREAL(I3)
YS2 - XIMAG(Il) + XIMAG(I3)

A-4

40

YS3 = XIMAG(Il) - XIMAG(I3)
XREAL(IO) - XSO + XS2
XIMAG(IO) = YSO + YS2
XI - XS1 + YS3
Yl - YS1 • - XS3
X2 = XSO • - XS2
Y2 - YSO • - YS2
X3 = XS1 • - YS3
Y3 = YS1 + XS3
IF (LITLA - 1) 170, 40, 50
XREAL(I2) = XI
XIMAG(I2) = Yl
XREAL(Il) - X2
XIMAG(Il) = Y2
XREAL(I3) = X3
XIMAG(I3) = Y3
GO TO 60

XI * CW1 + Yl * SW1
Yl * CW1 - XI * SW1
X2 * CW2 + Y2 * SH2
Y2 * CW2 - X2 * SH2
X3 * CW3 + Y3 * SW3
Y3 * CW3 - X3 * SW3

170

C MULTIPLY BY TWIDDLE FACTORS IF REQUIRED
C
50 XREAL(I2)

XIMAG(I2)
XREAL(Il)
XIMAG(Il)
XREAL(I3)
XIMAG(I3)

60 CONTINUE
IF (LITLA - IFACA) 70, 80,

C
C CALCULATE A NEW SET OF TWIDDLE FACTORS
C

Z - CW1 * BCOS - SW1 * BSIN + CW1
SW1 « BCOS * SW1 + BSIN * CW1 + SW1
TEMPR - ONE5 - HALF * (Z * Z + SW1 * SW1)
CW1 « Z * TEMPR
SW1 = SW1 * TEMPR
CW2 - CW1 * CW1 - SW1 * SW1
SW2 = TWO * CW1 * SW1
CW3 = CW1 * CW2 - SW1 * SW2
SW3 = CW1 * SW2 + CW2 * SW1

CONTINUE

70

80
C

IF (IFACA - 1) 120, 120, 90

C SET UP THE TRANSFORM SPLIT FOR THE NEXT STAGE
C
90 IFACA = IFACA / 4

IF (IFACA) 170, 100, 30
C
C THIS IS THE CALCULATION OF A RADIX TWO STAGE
C
100 DO 110 K - 1, N, 2

TEMPR = XREAL(K) + XREAL(K + 1)
XREAL(K + 1) = XREAL(K) - XREAL(K + 1)
XREAL(K) - TEMPR
TEMPR - XIMAG(K) + XIMAG(K + 1)
XIMAG(K + 1) = XIMAG(K) - XIMAG(K + 1)
XIMAG(K) - TEMPR

110 CONTINUE
C

A-5

120 IF (ITYPE) 130, 170, 150
C
C IF THIS WAS AN INVERSE TRANSFORM, CONJUGATE THE RESULT
C
130 TO 140 K - 1, N

XIMAG(K) = -XIMAG(K)
140 CONTINUE
C

RETURN
C
C IF THIS WAS A FORWARD TRANSFORM, SCALE THE RESULT
C
150 Z «= ONE / FLOAT(N)

TO 160 K - 1, N
XREAL(K) - XREAL(K) * Z
XIMAG(K) - XIMAG(K) * Z

160 CONTINUE
C
170 RETURN

END
C
C
C **
c
c

SUBROUTINE SCRAM(XREAL, XIMAG, N, IPOW)
C
C SOURCE: DONALD M. MONRO, "COMPLEX DISCRETE FAST FOURIER
C TRANSFORM", APPLIED STATISTICS 24(1975)153-160.
C

INTEGER L(21), J(21)
REAL XREAL(N), XIMAG(N)
J(l) = 1
II = 1

C
TO 10 K = 1, IPOW

L(K) - II
II « II * 2

10 CONTINUE
C

KLOOP - 1
II - 1
KPOW = IPOW - 1
ITOP = 2 ** KPOW
JPOW = IPOW - 2

C
C PROPAGATE THE INITIAL VALUE FOR THE COUNTER FOR THIS LOOP
C
20 DO 30 K - KLOOP, JPOW

J(K + 1) « J(K)
30 CONTINUE
C
C J20 IS THE BIT-REVERSE OF II
C

J20 « J(KPOW)
C

TO 60 I - 1, 2
IF (II - J20) 40, 50, 50

C
C PAIRWISE INTERCHANGE
C

A-6

40 TEMPR = XREAL(II)
XREAL(II) = XREAL(J20)
XREAL(J20) - TEMPR
TEMPR « XIMAG(II)
XIMAG(II) - XIMAG(J20)
XIMAG(J20) = TEMPR

C
C INCREMENT THE INNER LOOP
C
50 J20 = J20 + ITOP

II - II + 1
60 CONTINUE
C

KLOOP - KPOW
C
C INCREMENT AND TEST OUTER LOOPS
C
70 J(KLOOP) = J(KLOOP) + L(KLOOP)

IF (J(KLOOP) - L(KLOOP + 1)) 20, 20, 80
80 KLOOP - KLOOP - 1

IF (KLOOP) 90, 90, 70
C
90 RETURN

END
C
C
C **
C
c

SUBROUTINE TRANSP(IDEV, IMARK, MPOW, M, NPOW, N, NHALF, IP, IPP,
& IPAIR, IROWNR, ROWS, BUF)

C
C THIS SUBROUTINE TRANSPOSES A REAL MATRIX OF SIZE N X N (WHERE
C N - 2 ** NPOW AND NPOW IS AN INTEGER GREATER THAN OR EQUAL TO 2)
C USING THE EKLUNDH FAST MATRIX TRANSPOSTION ALGORITHM.
C

INTEGER IP(MPOW, NHALF), IPP(MPOW, NHALF), IPAIR(MPOW), IROWNR(M)
REAL ROWS(M, N), BUF(N)

C
NPASS « NPOW / MPOW
IF (JMOD(NPOW, MPOW) .NE. 0) NPASS - NPASS + 1

C
DO 180 IPASS = 1, NPASS

ISTART - 1 + MPOW * (IPASS - 1)
IEND - MPOW * IPASS
IF (IEND .GT. NPOW) IEND « NPOW
DO 20 I - ISTART, IEND

J - I - 1
IDELTA - 2 ** J
ICOUNT « 1
ISTOR « JMOD(I - 1, MPOW) + 1
DO 10 IROW - 1, N

IROWP - IROW - 1
IROWPP « IROWP + IDELTA
IF (IROWPP .GT. N - 1) GOTO 10
UP - JMOD((IROWP / IDELTA), 2)
IJPP - JMOD((IROWPP / IDELTA), 2)
IF (UP .EQ. IJPP) GOTO 10
ITEMP - IROWP

A-7

IF (UP .EQ. 0) ITEMP - ITEMP + IDELTA
IF (UP .EQ. 1) ITEMP - ITEMP - IDELTA
IF ((ITEMP - IROWPP) .NE. 0) GOTO 10
IP(ISTOR, ICOUNT) - IROWP
IPP(ISTOR, ICOUNT) « IROWPP
IF (ICOUNT .EQ. NHALF) GOTO 20
ICOUNT = ICOUNT + 1

10 CONTINUE
20 CONTINUE

NSTOR = ISTOR
DO 40 I = 1, NSTOR

DO 30 J - 1, NHALF
IP(I, J) = IP(I, J) + 1
IPF(I, J) - IPP(I, J) + 1

30 CONTINUE
40 CONTINUE

DO 50 I - 1, NSTOR
IPAIR(I) = 1

50 CONTINUE
IDELTA = M ** (IPASS - 1)
ICOUNT = 1

60 IDUMM - 0
70 IROW = JMOD(ICOUNT - 1, M) + 1

IRMATR - JMOD(IDELTA * (ICOUNT - 1), N - 1) + 1
IF (ICOUNT .EQ. N) IRMATR = N
IROWNR(IROW) - IRMATR
READ (IDEV, REC - IRMATR) BUF
DO 80 K - 1, N

ROWS(IROW, K) - BUF(K)
80 CONTINUE

ICOUNT = ICOUNT + 1
IF (IROW .NE. M) GOTO 70
DO 150 ISTOR = 1, NSTOR

90 J - JMOD(IDELTA * (IPAIR(ISTOR) - 1), NHALF - 1) +
IF (IPAIR(ISTOR) .EQ. NHALF) J = NHALF
DO 130 K - 1, M

IF (IP(ISTOR, J) .NE. IROWNR(K)) GOTO 130
KP - K
DO 100 L - KP + 1, M

IF (IPP(ISTOR, J) .NE. IROWNR(L)) GOTO 100
LP - L
GOTO 110

100 CONTINUE
110 DO 120 L - 1, NHALF

IPL - IP(ISTOR, L)
IPPL - IPP(ISTOR, L)
STOR - ROWS(KP, IPPL)
ROWS(KP, IPPL) « ROWS(LP, IPL)
ROWS(LP, IPL) - STOR

120 CONTINUE
GOTO 140

130 CONTINUE
140 IPAIR(ISTOR) = IPAIR(ISTOR) + 1

IF (JMOD(IPAIR(ISTOR) - 1, M / 2) .NE. 0) GOTO 90
150 CONTINUE

DO 170 IROW - 1, M
DO 160 I - 1, N

BUF(I) « ROWS(IROW, I)
160 CONTINUE

WRITE (IDEV, REC «= IROWNR(IROW)) BUF

A-8

170 CONTINUE
IF (ICOUNT

180 CONTINUE
C

RETURN
END

,LT. N) GOTO 60

A-9

C TTRANSP.FOR
C
C THIS PROGRAM TESTS THE FAST MATRIX TRANSPOSITION SUBROUTINE, TRANSP,
C ON REAL MATRICES RANGING IN SIZE FROM 4 X 4 TO 1024 X 1024.
C

INTEGER IP(10, 512), IPP(10, 512), IPAIR(IO), IROWNR(1024)
REAL ROWS(1024, 1024), BUF(1024)

C
DO 20 NPOW - 2, 10

N - 2 ** NPOW
NHALF - N / 2
DO 10 MPOW = 1, NPOW

M = 2 ** MPOW
CALL TRANTEST(MPOW, M, NPOW, N, NHALF, IP, IPP, IPAIR,

& IROWNR, ROWS, BUF)
10 CONTINUE
20 CONTINUE
C

STOP
END

C
C

SUBROUTINE TRANTEST(MPOW, M, NPOW, N, NHALF, IP, IPP, IPAIR,
& IROWNR, ROWS, BUF)

C
INTEGER IP(MPOW, NHALF), IPP(MPOW, NHALF), IPAIR(MPOW), IROWNR(M)
REAL ROWS(M, N), BUF(N)

C
OPEN (UNIT = 11, ACCESS = 'DIRECT', RECL - N, MAXREC = N,

& ASSOCIATE VARIABLE - 111, STATUS - 'SCRATCH')
OPEN (UNIT = 12, FILE - 'TEST.OUT', STATUS -= 'NEW')

C
DO 20 IROW = 1, N

DO 10 ICOL = 1, N
BUF(ICOL) - FLOAT(N * (IROW - 1) + ICOL)

10 CONTINUE
WRITE (11, REC = IROW) BUF

20 CONTINUE
C

CALL TRANSP(11, 111, MPOW, M, NPOW, N, NHALF, IP, IPP,
& IPAIR, IROWNR, ROWS, BUF)

C

c
ICOUNT

DO 50 IROW = 1, N
READ (11, REC = IROW) BUF
DO 40 ICOL - 1, N

DIFF - ABS(BUF(ICOL) - FLOAT(N * (ICOL - 1) + IROW))
IF (DIFF ,GT. 1.0E-6) THEN

WRITE (12, 30) IROW, ICOL, DIFF
30 F0RMAT(1X, 218, F12.4)

ICOUNT - ICOUNT + 1
END IF

40 CONTINUE
50 CONTINUE
C

WRITE (12, 60) MPOW, NPOW, ICOUNT
WRITE (6, 60) MPOW, NPOW, ICOUNT

60 FORMAT(IX, //, 5X, 'MPOW «= ', 13, 5X, 'NPOW « ', 13, 5X,
& 'ERROR COUNT - ', 18)

A-ll

CLOSE (11, STATUS = 'DELETE')
RETURN
END

A-12

c
c
c
c
c
c
c

TFFT2D.F0R

THIS PROGRAM TESTS THE ACCURACY OF FFT2D IN PERFORMING
AND INVERSE FOURIER TRANSFORMS ON ARRAYS OF SIZE 256 X
CAN BE EASILY MODIFIED TO HANDLE ARRAYS OF SIZE N X N,
POWER OF TWO AND N IS GREATER THAN OR EQUAL TO FOUR.

BOTH
256.
WHERE

FORWARD
IT
N IS A

&
&

INTEGER IP(4, 128), IPP(4, 128), IPAIR(4), IROWNR(16), ROWBEG,
ROWEND, COLBEG, COLEND
REAL ROWS(16, 256), XREAL(256), XIMAG(256), BUFR(256), BUFI(256)
DOUBLE PRECISION DC(256), DS(256), DCC(256), DSS(256), DPI,
DFAC1, DFAC2, DARG1, DARG2, DELTAX, DELTAY, DRR, DII, DRFFT,
DIFFT, DELR, DELI, FR, FI, FFR, FFI, XK, YL, UM, VN, XX, YY
COMMON /XXYY /XX, YY

MPOW =
NPOW =
ROWBEG
ROWEND
COLBEG
COLEND
XX = 1.
YY = 1.

4
8
= 128
= 128
= 151
= 154
0D0
0D0

M = 2
N - 2
NHALF
DPI =
DFAC1
DFAC2

** MPOW
** NPOW
= N / 2
3.1415926535897932D0
- (2.0D0 * DPI) / DFLOAT(N)
= DFLOAT(N - 1) / 2.0D0

'REAL.DAT' OPEN(UNIT = 11, ACCESS = 'DIRECT', FILE
& RECL - N, MAXREC - N, ASSOCIATE VARIABLE - 111,
& STATUS - 'UNKNOWN')

OPEN(UNIT - 12, ACCESS - 'DIRECT', FILE - 'IMAG.DAT',
& RECL = N, MAXREC = N, ASSOCIATE VARIABLE - 112,
& STATUS «= 'UNKNOWN')

OPEN(UNIT « 13, FILE = 'TFFT2D.DAT', STATUS - 'UNKNOWN')
C

DELTAX = XX / DFLOAT(N)
DELTAY «= YY / DFLOAT(N)

C
C GENERATE SAMPLES OF COMPLEX FUNCTION TO BE FOURIER TRANSFORMED; STORE
C IN DISK FILES
C

DO 20 IROW = 1, N
L • N - IROW
YL - (DFLOAT(L)
DO 10 ICOL - 1,

K - ICOL - 1
XK - (DFLOAT(K) - DFAC2)

- DFAC2) * DELTAY
N

* DELTAX

10

20
C

BUFR(ICOL)
BUFI(ICOL)

CONTINUE
WRITE(11, REC
WRITE(12, REC

CONTINUE

FR(XK, YL)
FI(XK, YL)

IROW) BUFR
IROW) BUFI

C CALCULATE FORWARD DFT USING FFT ALGORITHM
C

A-13

END
C

FUNCTION FI(X, 1)
DOUBLE PRECISION FI, X, Y

C
FI = O.CDO

C
RETURN
END

A-16

c
c
c
c
c
c
c
c
c

CONVOLVE.FOR

THIS PROGRAM CONVOLVES TWO COMPLEX ARRAYS (REAL AND IMAGINARY
PARTS STORED IN SEPARATE FILES) OF SIZE N X N, WHERE N = 512.
THE PROGRAM CAN BE EASILY MODIFIED TO HANDLE OTHER CASES WHERE
N IS A POWER OF TWO AND N IS GREATER THAN OR EQUAL TO TWO.
CONVOLVING TWO 512 X 512 COMPLEX ARRAYS ON A DEC MICROVAX II
COMPUTER REQUIRES APPROXIMATELY TWO HOURS OF EXECUTION TIME.

INTEGER IP(5, 512), IPP(5, 512), IPAIR(5), IROWNR(32)
REAL ROWS(32, 1024), XREAL(1024), XIMAG(1024), AR(512), AI(512),

& BR(512), BI(512), CR(1024), CI(1024), DR(1024), DI(1024),
& ZEROES(1024)

DOUBLE PRECISION DC(1024), DS(1024), DCC(1024), DSS(1024)
CHARACTER * 24 DATIN1, DATIN2, DATIN3, DATIN4, DATOl, DAT02

MPOW =
NPOW =
M2 - 2
N2 = 2
N = N2

5
10
** MPOW
** NPOW
/ 2

N2QUAR = N2 / 4

C OBTAIN USER INPUTS
C

WRITE (6, *)
WRITE (6, *)

'ENTER REAL, IMAG DATA FILES — IN APOSTROPHES'
'AREAL, AIMAG, BREAL, BIMAG, DREAL, DIMAG'

READ (5, *) DATIN1, DATIN2, DATIN3, DATIN4, DATOl, DAT02

OPEN

OPEN

OPEN

OPEN

(UNIT •
MAXREC
(UNIT -

11,
• N,
12,

ACCESS • 'DIRECT',
ASSOCIATE VARIABLE
ACCESS - 'DIRECT',

MAXREC = N, ASSOCIATE VARIABLE =112,
(UNIT - 13, ACCESS = 'DIRECT',

ASSOCIATE VARIABLE
ACCESS «= 'DIRECT',

MAXREC = N,
(UNIT = 14,

FILE « DATIN1, RECL = N,
- Ill, STATUS - 'OLD')
FILE - DATIN2, RECL = N,
= 112, STATUS - 'OLD')
FILE «= DATIN3, RECL = N,
- 113, STATUS - 'OLD')
FILE - DATIN4, RECL = N,
- 114, STATUS » 'OLD') MAXREC = N, ASSOCIATE VARIABLE = 114,

OPEN (UNIT • 15, ACCESS - 'DIRECT', RECL - N2, MAXREC = N2,
ASSOCIATE VARIABLE - 115, STATUS • 'SCRATCH')

OPEN (UNIT - 16, ACCESS = 'DIRECT', RECL - N2, MAXREC - N2,
ASSOCIATE VARIABLE - 116, STATUS = 'SCRATCH')

OPEN (UNIT - 17, ACCESS = 'DIRECT', FILE = DATOl, RECL = N2,
MAXREC «= N2, ASSOCIATE VARIABLE •= 117, STATUS - 'UNKNOWN')

OPEN (UNIT « 18, ACCESS »= 'DIRECT', FILE « DAT02, RECL ~ N2,
MAXREC = N2, ASSOCIATE VARIABLE *= 118, STATUS - 'UNKNOWN')

10
c
c
c
c
c

DO 10 I « • 1, N2
CR(I) - 0, ,0
CI(I) - 0, .0
DR(I) - 0, .0
DI(I) = 0, .0
ZEROES(I) =

CONTINUE
= 0.0

EXPAND ORIGINAL N X N MATRICES TO SIZE N2 X N2 BY FIRST PLACING
EACH ORIGINAL IN CENTER OF LARGER N2 X N2 ARRAY; THEN FILL "COLLAR" REGION
WITH ZEROES

DO 30 IROW 1, N

A-17

